Video Cho hình chóp có đáy là hình vuông tâm vuông góc với mặt phẳng gọi là trung điểm chọn khẳng định sai - Lớp.VN

Thủ Thuật về Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai Mới Nhất

Dương Anh Sơn đang tìm kiếm từ khóa Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai được Update vào lúc : 2022-04-04 22:25:13 . Với phương châm chia sẻ Mẹo Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read Post vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Ad lý giải và hướng dẫn lại nha.

    Tải app VietJack. Xem lời giải nhanh hơn!

Quảng cáo

* Cách chứng tỏ đường thẳng vuông góc với mặt phẳng cực hay

Muốn chứng tỏ đương thẳng d ⊥ (α) ta hoàn toàn có thể dùng môt trong hai cách sau.

Cách 1. Chứng minh d vuông góc với hai tuyến đường thẳng a; b cắt nhau trong (α) .

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách 2. Chứng minh d vuông góc với đường thẳng a mà a vuông góc với (α) .

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách 3. Chứng minh d vuông góc với (Q.) và (Q.) // (P).

* Chứng minh hai tuyến đường thẳng vuông góc

- Để chứng tỏ d ⊥ a, ta hoàn toàn có thể chứng tỏ bởi một trong những phương pháp sau:

   + Chứng minh d vuông góc với (P) và (P) chứa a.

   + Sử dụng định lí ba đường vuông góc.

   + Sử dụng những phương pháp chứng tỏ đã biết ở phần trước.

Ví dụ 1: Cho hình chóp S. ABC có SA ⊥ (ABC) và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?

A. SA ⊥ BC

B. AH ⊥ BC

C. AH ⊥ AC

D. AH ⊥ SC

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn C

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Vậy câu C sai.

Ví dụ 2: Cho tứ diện SABC có ABC là tam giác vuông tại B và SA ⊥ (ABC). Khẳng định nào sau đây là đúng nhất.

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn A

Quảng cáo

Ví dụ 3: Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây đúng?

A. AB ⊥ (ABC)

B. AB ⊥ BD

C. AB ⊥ (ABD)

D. BC ⊥ AD

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn D

Gọi E là trung điểm của BC.

Tam giác DCB cân tại D có DE là đường trung tuyến nên đồng thời là đường cao: DE ⊥ BC.

Tam giác ABC cân tại A có AE là đường trung tuyến nên đồng thời là đường cao : AE ⊥ BC

Khi đó ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ví dụ 4: Cho hình chóp S.ABC có SA ⊥ (ABC) và AB ⊥ BC Số những mặt của tứ diện S.ABC là tam giác vuông là:

A. 1                   B. 2                   C. 3                   D. 4

Hướng dẫn giải

Có AB ⊥ BC ⇒ ΔABC là tam giác vuông tại B

Ta có SA ⊥ (ABC) ⇒ Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11 là những tam giác vuông tại A

Mặt khác Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11 là tam giác vuông tại B

Vậy bốn mặt của tứ diện đều là tam giác vuông. Nên đáp án D đúng

Chọn D

Ví dụ 5: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Khẳng định nào sau đây sai?

A. SO ⊥ (ABCD)

B. CD ⊥ (SBD)

C. AB ⊥ (SAC)

D. CD ⊥ AC

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn B

Tam giác SAC cân tại S có SO là trung tuyến nên SO cũng là đường cao ⇒ SO ⊥ AC .

Tam giác SBD cân tại S có SO là trung tuyến nên SO cũng là đường cao ⇒ SO ⊥ BD .

Từ đó suy ra SO ⊥ (ABCD) .

Do ABCD là hình thoi nên CD không vuông góc với BD. Do đó CD không vuông góc với (SBD)

Ví dụ 6: Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AE, AF lần lượt là những đường cao của tam giác SAB và tam giác SAD. Chọn xác định đúng trong những xác định sau ?

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Quảng cáo

Hướng dẫn giải

Ta chứng tỏ phương án D đúng.

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn D

Ví dụ 7: Cho hình chóp S. ABC có cạnh SA ⊥ (ABC) và đáy ABC là tam giác cân ở C . Gọi H và K lần lượt là trung điểm của AB và SB . Khẳng định nào sau đây sai?

A. CH ⊥ SA                 B. CH ⊥ SB                 C. CH ⊥ AK                 D. AK ⊥ SB

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn D

Do tam giác ABC cân tại C; có CH là đường trung tuyến nên đồng thời là đường cao nên CH ⊥ AB.

Lại có: CH ⊥ SA (vì SA vuông góc với mp(ABC)) .

Suy ra CH ⊥ (SAB). Vậy những câu A, B, C đúng nên D sai.

Ví dụ 8: Cho tứ diện ABCD. Vẽ AH ⊥ (BCD) . Biết H là trực tâm tam giac BCD. Khẳng định nào sau đây đúng?

A. CD ⊥ BD                 B. AC = BD                 C. AB = CD.                 D. AB ⊥ CD

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn đáp án D

Ví dụ 9: Cho tứ diện SABC thoả mãn SA= SB= SC. Gọi H là hình chiếu của S lên mp (ABC) . Đối với tam giác ABC ta có điểm H là:

A. Trực tâm.

B. Tâm đường tròn nội tiếp.

C. Trọng tâm.

D. Tâm đường tròn ngoại tiếp.

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ví dụ 10: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mp(ABC) . Mệnh đề nào sai trong những mệnh đề sau:

A. H là trực tâm tam giác ABC

B. H là tâm đường tròn ngoại tiếp tam giác ABC

C. Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

D. CH là đường cao của tam giác ABC .

Hướng dẫn giải

+ Ta có OA ⊥ (OBC) ⇒ OA ⊥ BC và OH ⊥ BC ⇒ BC ⊥ (OAH) ⇒ BC ⊥ AH. Tương tự, ta có AB ⊥ CH

Hai đường thẳng AH và CH cắt nhau tại H nên H là trực tâm tam giác ABC

suy ra đáp án A, D đúng

+ Gọi I là giao điểm của AH và BC .

Ta có ; OA ⊥ (OBC) nên OA ⊥ OI

Xét tam giác vuông OAI có đường cao OH Ta có

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

suy ra đáp án C đúng.

Chọn đáp án B

Ví dụ 11: Cho hình chóp S.ABC có ∠BSC = 120°, ∠CSA = 60°, ∠ASB = 90°, SA = SB = SC. Gọi I là hình chiếu vuông góc của S lên mp ( ABC). Chọn xác định đúng trong những xác định sau

A. I là trung điểm AB

B. I là trọng tâm tam giác ABC

C. I là trung điểm AC

D. I là trung điểm BC

Hướng dẫn giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Gọi SA = SB = SC = a

+ Ta có : tam giác SAC đều nên AC = SA = a

Tam giác SAB vuông cân tại S ⇒ AB = a√2

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

+ Gọi I là trung điểm của BC thì IA = IB = IC nên I là tâm

đường tròn ngoại tiếp tam giác ABC .

Ta có : SA = SB = SC và IA = IB = IC

⇒ SI là trục đường tròn ngoại tiếp tam giác ABC

⇒ SI ⊥ (ABC)

Vậy nên I là hình chiếu vuông góc của S lên mặt phẳng (ABC)

Chọn D

Câu 1: Cho tứ diện ABCD có AB ⊥ CD và AC ⊥ BD. Gọi H là hình chiếu vuông góc của A lên mp(BCD) . Các xác định sau, xác định nào sai?

A. H là trực tâm tam giác BCD

B. CD ⊥ (ABH)

C. AD ⊥ BC

D. Các xác định trên đều sai.

Hiển thị lời giải

Ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Tương tự BD ⊥ CH

Suy ra H là trực tâm tam giác BCD. Suy ra loại đáp án A, B

Ta có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11 suy ra loại C.

Chọn đáp án D

Câu 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H, K lần lượt là trực tâm những tam giác SBC và ABC. Mệnh đề nào sai trong những mệnh đề sau?

A. BC ⊥ (SAH)                 B. HK ⊥ (SBC)

C. BC ⊥ (SAB)                 D. SH, AK và BC đồng quy

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ta có BC ⊥ SA, BC ⊥ SH ⇒ BC ⊥ (SAH)

Ta có CK ⊥ AB, CK ⊥ SA ⇒ CK ⊥ (SAB) hay CK ⊥ SB

Mặt khác có CH ⊥ SB nên suy ra SB ⊥ (CHK) hay SB ⊥ HK, tương tự SC ⊥ HK nên HK ⊥ (SBC)

Gọi M là giao điểm của SH và BC.

Do BC ⊥ (SAH) ⇒ BC ⊥ AM hay đường thẳng AM trùng với đường thẳng AK

⇒ SH, AK và BC đồng quy

Do dó BC ⊥ (SAB). Sai

Chọn đáp án C

Câu 3: Cho hình chóp S. ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Khẳng định nào sau đây là sai?.

A. SO ⊥ (ABCD)

B. SO ⊥ AC

C. SO ⊥ BD

D. Cả A, B, C đều sai

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ta có O là trung điểm của AC và SA = SC ⇒ SO ⊥ AC

Tương tự SO ⊥ BD

Vậy Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn D

Câu 4: Cho hình chóp S. ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Các xác định sau, xác định nào sai?

A. SA ⊥ BD                 B. SC ⊥ BD                 C. SO ⊥ BD                 D. AD ⊥ SC

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ta có SA ⊥ (ABCD) ⇒ SA ⊥ BD

Do tứ giác ABCD là hình thoi nên BD ⊥ AC mà SA ⊥ BD nên BD ⊥ (SAC) hay BD ⊥ SC, BD ⊥ SO

Chọn đáp án D

Câu 5: Cho hình chóp S.ABCD có đáy ABCD là hình vuông vắn và SA ⊥ (ABCD). Gọi I; J; K lần lượt là trung điểm của AB, BC và SB. Khẳng định nào sau đây sai?

A. (IJK) // (SAC)

B. BD ⊥ (IJK)

C. Góc giữa SC và BD có số đo 60°

D. BD ⊥ (SAC)

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn C.

+ Tam giác ABC có IJ Là đường trung bình của tam giác nên IJ // AC

Tam giác SAB có IK là đường trung bình của tam giác nên IK // SA

⇒ (IJK) // (SAC). Vậy A đúng

+ Do BD ⊥ AC và BD ⊥ SA nên BD ⊥ (SAC)

nên D đúng.

+ Do BD ⊥ (SAC) và (IJK) // (SAC) nên BD ⊥ (IJK) nên B đúng.

Vậy C sai

Câu 6: Cho hình chóp S. ABCD có đáy ABCD là hình vuông vắn, Gọi H là trung điểm của AB và SH ⊥ (ABCD). Gọi K là trung điểm của cạnh AD. Khẳng định nào sau đây là sai?

A. AC ⊥ SH

B. AC ⊥ KH

C. AC ⊥ (SHK)

D. Cả A, B, C đều sai

Hiển thị lời giải

+ Ta cos SH ⊥ (ABCD) ⇒ SH ⊥ AC

+ Tam giác ABD có H và K lần lượt là trung điểm của AB và AD nên HK là đường trung bình của tam giác ⇒ HK // BD

Lại có Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

⇒ AC ⊥ (SHK)

Chọn D

Câu 7: Cho tứ diện OABC có ba cạnh OA ; OB ; OC đôi một vuông góc. Gọi H là hình chiếu của O lên (ABC). Khẳng định nào sau đây sai?

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Xét tam giác AOI vuông tại O có OH đường cao:

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Từ (1) và (2) ⇒ H là trực tâm tam giác ABC ⇒ Đáp án C đúng.

Chọn đáp án D.

Câu 8: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc nhau. Hãy chỉ ra điểm O cách đều bốn điểm A, B ; C ; D.

A. O là tâm đường tròn ngoại tiếp tam giác ABC

B. O là trọng tâm tam giác ACD

C. O là trung điểm cạnh BD

D. O là trung điểm cạnh AD

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn D

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Câu 9: Cho tứ diện ABCD. Vẽ AH ⊥ (BCD). Biết H là trực tâm tam giác BCD . Khẳng định nào sau đây không sai?

A. AB = CD                   B. AC = BD                   C. AB ⊥ CD                   D. CD ⊥ BB

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn C

Do AH ⊥ (BCD) ⇒ AH ⊥ CD .

Mặt khác, H là trực tâm tam giác BCD nên BH ⊥ CD

Suy ra CD ⊥ (ABH) nên CD ⊥ AB.

Câu 10: Cho hình chóp S.ABCD có đáy ABCD là hình vuông vắn cạnh a, mặt bên SAB là tam giác đều và SC = a√2. Gọi H, K lần lượt là trung điểm của những cạnh AB và AD. Khẳng định nào sau đây là sai?.

A. SH ⊥ (ABCD)

B. SH ⊥ HC

C. A, B đều đúng

D. A, B là sai

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Vì H là trung điểm của AB và tam giác SAB đều nên SH ⊥ AB

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Câu 11: Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?

A. ( A’BD)                B. ( A’DC’)                C. ( A’CD’)                D. ( A’B’CD)

Hiển thị lời giải

Ta có

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Vậy chọn đáp án A

Câu 12: Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của 2 đường chéo và SA = SC. Các xác định sau, xác định nào đúng?

A. SA ⊥ (ABCD)                 B. BD ⊥ (SAC)

C. AC ⊥ (SBD)                   D. AB ⊥ (SAC)

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Ta có: SA = SC nên tam giác SAC là tam giác cân

Mặt khác: O là trung điểm của AC (tính chất hình thoi)

Khi đó ta có: AC ⊥ SO

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Vậy chọn đáp án C

Câu 13: Cho hình chóp S. ABCD có đáy ABCD là hình vuông vắn, SA ⊥ (ABCD). Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD theo thứ tự tại H, M, K . Chọn xác định sai trong những xác định sau?

A. AK ⊥ HK                 B. HK ⊥ AM                 C. BD // KH                  D. AH ⊥ SB .

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Câu 14: Cho hình chóp S.ABC có ∠BSC = 120°, ∠CSA = 60°, ∠ASB = 90°, SA = SB = SC. Gọi I là hình chiếu vuông góc của S lên mp(ABC). Chọn xác định đúng trong những xác định sau

A. I là trung điểm AB

B. I là trọng tâm tam giác ABC

C. I là trung điểm AC

D. I là trung điểm BC

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Gọi SA = SB = SC = a

Ta có: tam giác SAC cân có một góc bằng 60° nên tam giác SAC đều ⇒ AC = SA = a

+ tam giác SAB vuông cân tại S

⇒ AB = a√2

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

⇒ AC2 + AB2 = BC2 nên tam giác ABC vuông tại A

+ Gọi I là trung điểm của AC thì I là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là trục của tam giác ABC thì d đi qua I và d ⊥ (ABC)

Mặt khác : SA = SB = SC nên S ∈ d . Vậy SI ⊥ (ABC) nên I là hình chiếu vuông góc của S lên mặt phẳng (ABC)

Chọn C

Câu 15: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng ( ABC) . Xét những mệnh đề sau :

I. Vì OC ⊥ OA, OC ⊥ OB nên OC ⊥ (OAB)

II. Do AB ⊂ (ABC) nên AB ⊥ OC     (1)

III. Có OH ⊥ (ABC) và AB ⊂ (ABC) nên AB ⊥ OH   (2)

IV. Từ (1) và (2) AB ⊥ (OCH)

Trong những mệnh đề trên mệnh đề nào đúng ?

A. I, II, III, IV

B. I, II, III

C. II, III, IV

D. I, IV

Hiển thị lời giải

Ta có:

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Chọn đáp án A

Câu 16: Cho hình hộp ABCD.A’B’C’D’ Có đáy là hình thoi ∠BAD = 60° và AA’ = A’B = A’D. Gọi O = AC ∩ BD. Hình chiếu của A’ trên (ABCD) là :

A. trung điểm của AO

B. trọng tâm tam giác ABD

C. giao của hai đoạn AC và BD

D. trọng tâm tam giác BCD.

Hiển thị lời giải

Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay - Toán lớp 11

Vì A’A = A’B = A’D nên hình chiếu của A’ trên ( ABCD) trùng với H là tâm đường tròn ngoại tiếp tam giác ABD (1).

Mà tứ giá ABCD là hình thoi và ∠BAD = 60° nên tam giác BAD là tam giác đều (2)

Từ (1) và ( 2) suy ra H là trọng tâm tam giác ABD

Chọn đáp án B

[embed]https://www.youtube.com/watch?v=ieCkGJwl-s8[/embed]

Giới thiệu kênh Youtube VietJack

    Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên social facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các phản hồi không phù phù phù hợp với nội quy phản hồi trang web sẽ bị cấm phản hồi vĩnh viễn.

[embed]https://www.youtube.com/watch?v=If56GnsX5V0[/embed]

Video Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai ?

Bạn vừa đọc nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Review Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai tiên tiến nhất

Chia Sẻ Link Cập nhật Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai miễn phí

Pro đang tìm một số trong những Chia SẻLink Download Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai Free.

Giải đáp thắc mắc về Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai

Nếu sau khi đọc nội dung bài viết Cho hình chóp có đáy là hình vuông vắn tâm vuông góc với mặt phẳng gọi là trung điểm chọn xác định sai vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Admin lý giải và hướng dẫn lại nha #Cho #hình #chóp #có #đáy #là #hình #vuông #tâm #vuông #góc #với #mặt #phẳng #gọi #là #trung #điểm #chọn #khẳng #định #sai - 2022-04-04 22:25:13
إرسال تعليق (0)
أحدث أقدم