Kinh Nghiệm về Trong hệ trục tọa độ Oxy, cho A(2;1 B(3 4 C(4 1 chiếu cao BH của tam giác ABC là))) 2022
Dương Khoa Vũ đang tìm kiếm từ khóa Trong hệ trục tọa độ Oxy, cho A(2;1 B(3 4 C(4 1 chiếu cao BH của tam giác ABC là))) được Update vào lúc : 2022-05-17 01:48:03 . Với phương châm chia sẻ Thủ Thuật về trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tham khảo tài liệu vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Admin lý giải và hướng dẫn lại nha.
Trong không khí Oxyz cho tam giác ABC có. Bài 23 trang 119 Sách bài tập Hình học lớp 12 Nâng cao – Bài 1. Hệ tọa độ trong không khí
Trong không khí Oxyz cho tam giác ABC có
A (1;2;-1), B (2;-1;3), C (-4;7;5).
a) Tính độ dài đường cao (h_A) của tam giác kẻ từ A.
b) Tính độ dài đường phân giác trong tam giác kẻ từ đỉnh B.
a) Ta có (overrightarrow AB = (1; – 3;4),overrightarrow AC = ( – 5;5;6),overrightarrow BC = ( – 6;8;2))
( Rightarrow left[ overrightarrow AB ,overrightarrow AC right] = ( – 38; – 26; – 10).)
Vậy (S_ABC = 1 over 2sqrt 38^2 + 26^2 + 10^2 = sqrt 555 )
Quảng cáo(h_A = 2S_ABC over BC = 2sqrt 555 over sqrt 104 = sqrt 555 over sqrt 26 .)
b) Gọi D là chân đường phân giác kẻ từ B, giả sử D=(x;y;z).
Ta có (DA over DC = BA over BC = sqrt 26 over sqrt 104 = 1 over 2.)
Vì D nằm giữa A,C (phân giác trong ) nên (overrightarrow DA = – 1 over 2overrightarrow DC ) hay
(overrightarrow CD = 2overrightarrow DA Leftrightarrow left{ matrix 2(1 – x) = x + 4 hfill cr 2(2 – y) = y – 7 hfill cr 2( – 1 – z) = z – 5 hfill cr right. )
(Leftrightarrow left{ matrix x = – 2 over 3 hfill cr y = 11 over 3 hfill cr z = 1 hfill cr right.)
Vậy (D = left( – 2 over 3;11 over 3;1 right) Rightarrow BD = 2sqrt 74 over 3.)
- Tải app VietJack. Xem lời giải nhanh hơn!
Quảng cáo
* Để viết phương trình tổng quát của đường thẳng d ta cần xác định :
- Điểm A(x0; y0) thuộc d
- Một vectơ pháp tuyến n→( a; b) của d
Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0
* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .
Ví dụ 1: Đường thẳng đi qua A(1; -2) , nhận n→ = (1; -2) làm véc tơ pháp tuyến có phương trình là:
A. x - 2y + 1 = 0. B. 2x + y = 0 C. x - 2y - 5 = 0 D. x - 2y + 5 = 0
Lời giải
Gọi (d) là đường thẳng đi qua A và nhận n→ = (1; -2) làm VTPT
=>Phương trình đường thẳng (d) : 1(x - 1) - 2(y + 2) = 0 hay x - 2y – 5 = 0
Chọn C.
Ví dụ 2: Viết phương trình tổng quát của đường thẳng ∆ đi qua M(1; -3) và nhận vectơ n→(1; 2) làm vectơ pháp tuyến.
A. ∆: x + 2y + 5 = 0 B. ∆: x + 2y – 5 = 0 C. ∆: 2x + y + 1 = 0 D. Đáp án khác
Lời giải
Đường thẳng ∆: qua M( 1; -3) và VTPT n→(1; 2)
Vậy phương trình tổng quát của đường thẳng ∆ là một trong(x - 1) + 2(y + 3) = 0
Hay x + 2y + 5 = 0
Chọn A.
Quảng cáo
Ví dụ 3: Cho đường thẳng (d): x-2y + 1= 0 . Nếu đường thẳng (∆) đi qua M(1; -1) và song song với d thì ∆ có phương trình
A. x - 2y - 3 = 0 B. x - 2y + 5 = 0 C. x - 2y +3 = 0 D. x + 2y + 1 = 0
Lời giải
Do đường thẳng ∆// d nên đường thẳng ∆ có dạng x - 2y + c = 0 (c ≠ 1)
Ta lại sở hữu M(1; -1) ∈ (∆) ⇒ 1 - 2(-1) + c = 0 ⇔ c = -3
Vậy phương trình ∆: x - 2y - 3 = 0
Chọn A
Ví dụ 4: Cho ba điểm A(1; -2); B(5; -4) và C(-1;4) . Đường cao AA’ của tam giác ABC có phương trình
A. 3x - 4y + 8 = 0 B. 3x – 4y - 11 = 0 C. -6x + 8y + 11 = 0 D. 8x + 6y + 13 = 0
Lời giải
Ta có BC→ = (-6; 8)
Gọi AA’ là đường cao của tam giác ABC
⇒ AA' nhận VTPT n→ = BC→ = (-6; 8) và qua A(1; -2)
Suy ra phương trình AA’: -6(x - 1) + 8(y + 2) = 0
Hay -6x + 8y + 22 = 0 ⇔ 3x - 4y - 11 = 0.
Chọn B
Ví dụ 5. Đường thẳng d đi qua điểm A( 1; -3) và có vectơ pháp tuyến n→( 1; 5) có phương trình tổng quát là:
A. d: x + 5y + 2 = 0 B. d: x- 5y + 2 = 0 C. x + 5y + 14 = 0 D. d: x - 5y + 7 = 0
Lời giải
Ta có: đường thẳng d: qua A( 1; -3) và VTPT n→( 1; 5)
⇒ Phương trình tổng quát của đường thẳng d:
1( x - 1) + 5.(y + 3) = 0 hay x + 5y + 14 = 0
Chọn C.
Quảng cáo
Ví dụ 6. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; -1); B( 4; 5) và C( -3; 2) . Lập phương trình đường cao của tam giác ABC kẻ từ A
A. 7x + 3y – 11 = 0 B. -3x + 7y + 5 = 0 C. 3x + 7y + 2 = 0 D. 7x + 3y + 15 = 0
Lời giải
Gọi H là chân đường vuông góc kẻ từ A.
Đường thẳng AH : qua A( 2;-1) và Nhận VTPT BC→( 7; 3)
⇒ Phương trình đường cao AH :
7( x - 2) + 3(y + 1) = 0 hay 7x + 3y – 11 = 0
Chọn A.
Ví dụ 7 : Cho tam giác ABC cân tại A có A(1 ; -2). Gọi M là trung điểm của BC và
M( -2 ; 1). Lập phương trình đường thẳng BC ?
A. x + y - 3 = 0 B. 2x - y + 6 = 0 C. x - y + 3 = 0 D. x + y + 1 = 0
Lời giải
+ Do tam giác ABC cân tại A nên đường trung tuyến AM đồng thời là đường cao
⇒ AM vuông góc BC.
⇒ Đường thẳng BC nhận AM→( -3 ; 3) = -3(1 ; -1) làm VTPT
+ Đường thẳng BC : qua M(-2; 1) và VTPT n→( 1; -1)
⇒ Phương trình đường thẳng BC :
1(x + 2) - 1(y - 1) = 0 hay x - y + 3 = 0
Chọn C.
Ví dụ 8 : Cho tam giác ABC có đường cao BH : x + y - 2 = 0, đường cao CK : 2x + 3y - 5 = 0 và phương trình cạnh BC : 2x - y + 2 = 0. Lập phương trình đường cao kẻ từ A của tam giác ABC ?
A. x - 3y + 1 = 0 B. x + 4y - 5 = 0 C. x + 2y - 3 =0 D. 2x - y + 1 = 0
Lời giải
+ Gọi ba đường cao của tam giác ABC đồng quy tại P. Tọa độ của P là nghiệm hệ phương trình :
⇒ P( 1 ; 1)
+Tọa độ điểm B là nghiệm hệ phương trình :
⇒ B( 0 ;2)
Tương tự ta tìm được tọa độ C(-
; )+ Đường thẳng AP :
⇒ Phương trình đường thẳng AP :
1(x - 1) + 2(y - 1) = 0 ⇔ x + 2y - 3 = 0
Chọn C.
Ví dụ 9. Phương trình tổng quát của đường thẳng d đi qua O và song song với đường thẳng ∆ : 3x + 5y - 9 = 0 là:
A. 3x + 5y - 7 = 0 B. 3x + 5y = 0 C. 3x - 5y = 0 D. 3x - 5y + 9 = 0
Lời giải
Do đường thẳng d// ∆ nên đường thẳng d có dạng : 3x + 5y + c = 0 ( c ≠ - 9)
Do điểm O(0; 0) thuộc đường thẳng d nên :
3.0 + 5.0 + c = 0 ⇔ c = 0
Vậy phương trình đường thẳng d: 3x + 5y = 0
Chọn B.
Ví dụ 10: Cho tam giác ABC có B(-2; -4). Gọi I và J lần lượt là trung điểm của AB và AC. Biết đường thẳng IJ có phương trình 2x - 3y + 1 = 0. Lập phương trình đường thẳng BC?
A. 2x + 3y - 1 = 0 B. 2x - 3y - 8 = 0 C. 2x + 3y - 6 = 0 D. 2x - 3y + 1 = 0
Lời giải
Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC.
⇒ IJ// BC.
⇒ Đường thẳng BC có dạng : 2x - 3y + c = 0 ( c ≠ 1)
Mà điểm B thuộc BC nên: 2.(-2) - 3(-4) + c = 0 ⇔ c = -8
⇒ phương trình đường thẳng BC: 2x - 3y - 8 = 0
Chọn B.
Ví dụ 11. Cho ba đường thẳng (a):3x - 2y + 5 = 0; (b): 2x + 4y - 7 = 0 và
(c): 3x + 4y - 1 = 0 . Phương trình đường thẳng d đi qua giao điểm của a và b , và song song với c là:
A. 24x + 32y - 53 = 0. B. 23x + 32y + 53 = 0 C. 24x - 33y + 12 = 0. D. Đáp án khác
Lời giải
Giao điểm của (a) và ( b) nếu có là nghiệm hệ phương trình :
⇒ A( ; )
Ta có đường thẳng d // c nên đường thẳng d có dạng: 3x+ 4y+ c= 0 (c≠-1)
Vì điểm A thuộc đường thẳng d nên : 3. + 4. + c = 0 ⇔ c=
Vậy d: 3x + 4y + = 0 ⇔ d3 = 24x + 32y - 53 = 0
Chọn A.
Câu 1: Lập phương trình đường thẳng d đi qua điểm M( 2 ; 1) và nhận vecto n→( -2 ; 1) làm VTPT ?
A. 2x + y - 5 = 0 B. - 2x + y + 3 = 0 C. 2x - y - 4 = 0 D. 2x + y - 1 = 0
Hiển thị lời giải
Đáp án: B
Trả lời:
Đường thẳng d :
⇒ Phương trình đường thẳng d : - 2(x - 2) + 1(y - 1) = 0
Hay (d) : -2x + y + 3 = 0.
Câu 2: Cho đường thẳng (a) : 2x+ y- 3=0 và (b) : 3x- 4y+ 1= 0. Lập phương trình đường thẳng d đi qua giao điểm của hai tuyến đường thẳng a và b ; nhận vecto n→( 2 ; -3) làm VTPT ?
A. 2x - 3y + 6 = 0 B. -2x - 3y + 6 = 0 C. 2x - 3y + 1 = 0 D. 2x + 3y - 1 =0
Hiển thị lời giải
Đáp án: C
Trả lời:
+ Giao điểm A của hai tuyến đường thẳng a và b là nghiệm hệ phương trình :
⇒ A( 1 ; 1)
+ Đường thẳng (d) :
⇒ Phương trình đường thẳng d : 2(x - 1) - 3(y - 1) = 0 hay 2x - 3y + 1 = 0.
Câu 3: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; -1), B(4; 5) và C( -3; 2) . Lập phương trình đường cao của tam giác ABC kẻ từ B
A. 3x - 5y + 1 = 0 B. 3x + 5y - 20 = 0 C. 3x + 5y - 12 = 0 D. 5x - 3y -5 = 0
Hiển thị lời giải
Đáp án: D
Trả lời:
Gọi H là chân đường vuông góc kẻ từ B của tam giác ABC.
Đường thẳng BH :
⇒ Phương trình đường cao BH :
5(x - 4) – 3(y - 5) = 0 hay 5x - 3y – 5 = 0
Câu 4: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1) ; B( 4;5) và C( -3; 2). Tìm trực tâm tam giác ABC?
A. (
; - ) B. ( ; ) C. ( ; ) D. ( ; ) Hiển thị lời giải
Đáp án: B
Trả lời:
+ Gọi H và K lần lượt là chân đường vuông góc kẻ từ C và B của tam giác ABC.
+ Đường thẳng CH :
⇒ Phương trình đường cao CH :
2(x + 3) + 6(y - 2) = 0 hay 2x + 6y – 6 = 0
⇔ (CH) : x+ 3y – 3= 0
+ Đường thẳng BK :
=>Phương trình đường cao BK : - 5(x - 4) + 3(y - 5)=0 hay -5x + 3y + 5 = 0.
+ Gọi P là trực tâm tam giác ABC. Khi đó P là giao điểm của hai tuyến đường cao CH và BK nên tọa độ điểm P là nghiệm hệ :
Vậy trực tâm tam giác ABC là P( ; )
Câu 5: Cho tam giác ABC có A( 2;-1) ; B( 4; 5) và C( -3; 2). Phương trình tổng quát của đường cao AH của tam giác ABC là:
A. 3x - 7y + 11 = 0. B. 7x + 3y - 11 = 0 C. 3x - 7y - 13 = 0. D. 7x + 3y + 13 = 0.
Hiển thị lời giải
Đáp án: B
Trả lời:
Gọi AH là đường cao của tam giác.
Đường thẳng AH : đi qua A( 2; -1) và nhận BC→ = (-7; -3) = - (7; 3) làm VTPT
=> Phương trình tổng quát AH: 7(x - 2) + 3(y + 1)= 0 hay 7x + 3y - 11 = 0
Câu 6: Cho đường thẳng (d): 3x- 2y+ 8= 0. Đường thẳng ∆ đi qua M(3; 1) và song song với (d) có phương trình:
A. 3x - 2y - 7 = 0. B. 2x + 3y - 9 = 0. C. 2x - 3y - 3 = 0. D. 3x - 2y + 1 = 0
Hiển thị lời giải
Đáp án: A
Trả lời:
Do ∆ song song với d nên có phương trình dạng: 3x - 2y + c = 0 (c ≠ 8)
Mà ∆ đi qua M (3;1) nên 3.3 - 2.1 + c = 0 nên c = - 7
Vậy phương trình ∆: 3x - 2y - 7 = 0
Câu 7: Cho tam giác ABC có B(2; -3). Gọi I và J lần lượt là trung điểm của AB và AC. Biết đường thẳng IJ có phương trình x- y+ 3= 0. Lập phương trình đường thẳng BC?
A. x + y + 2 = 0 B. x - y - 5 = 0 C. x - y + 6 = 0 D. x - y = 0
Hiển thị lời giải
Đáp án: B
Trả lời:
Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC.
⇒ IJ// BC.
⇒ Đường thẳng BC có dạng : x - y + c = 0 ( c ≠ 3)
Mà điểm B thuộc BC nên: 2 - (-3) + c = 0 ⇔ c = -5
⇒ phương trình đường thẳng BC: x - y - 5 = 0
Câu 8: Cho tam giác ABC cân tại A có A(3 ; 2). Gọi M là trung điểm của BC và M( -2 ; -4). Lập phương trình đường thẳng BC ?
A. 6x - 5y + 13 = 0 B. 5x - 6y + 6 = 0 C. 5x + 6y + 34 = 0 D. 5x + 6y + 1 = 0
Hiển thị lời giải
Đáp án: C
Trả lời:
+ Do tam giác ABC cân tại A nên đường trung tuyến AM đồng thời là đường cao
⇒ AM vuông góc BC.
⇒ Đường thẳng BC nhận AM→( - 5; -6) = -(5; 6) làm VTPT
+ Đường thẳng BC :
⇒ Phương trình đường thẳng BC :
5(x + 2) + 6( y + 4) = 0 hay 5x + 6y + 34= 0
Câu 9: Viết phương trình tổng quát của đường thẳng d đi qua điểm M( -1; 2) và song song với trục Ox.
A. y + 2 = 0 B. x + 1 = 0 C. x - 1 = 0 D. y - 2 = 0
Hiển thị lời giải
Đáp án: D
Trả lời:
Trục Ox có phương trình y= 0
Đường thẳng d song song với trục Ox có dạng : y + c = 0 ( c ≠ 0)
Vì đường thẳng d đi qua điểm M( -1 ;2) nên 2 + c = 0 ⇔ c= -2
Vậy phương trình đường thẳng d cần tìm là : y - 2= 0
Chuyên đề Toán 10: đầy đủ lý thuyết và những dạng bài tập có đáp án khác:
[embed]https://www.youtube.com/watch?v=ieCkGJwl-s8[/embed]
Giới thiệu kênh Youtube VietJack
- Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên social facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các phản hồi không phù phù phù hợp với nội quy phản hồi trang web sẽ bị cấm phản hồi vĩnh viễn.
phuong-phap-toa-do-trong-mat-phang.jsp